DL05/06 Option Modules

F0-04AD-1 <--->

4-channel analog mA input module

FO-04AD-1 Input Specifications	
Number of Channels	$\begin{aligned} & \text { 4, single ended } \\ & \text { (one common) } \end{aligned}$
Input Range	$\begin{aligned} & 0 \text { too20mA or } \\ & 4 \text { to } 20 \mathrm{~mA} \\ & \text { (jumper selectable) } \end{aligned}$
Resolution	12 bit (1 in 4096)
Step Response	$\begin{aligned} & \text { 25.0mS (typ.) } \\ & \text { to } 95 \% \text { (ty } \\ & \text { of full step change } \end{aligned}$
Crosstalk	$\begin{aligned} & 1 / 2 \text { count max } \\ & (-80 \mathrm{db})^{\star} \end{aligned}$
Active Low-pass Filtering	$\begin{aligned} & -3 \mathrm{~dB} \text { at } 40 \mathrm{~Hz} \\ & (-12 \mathrm{~dB} \text { per octave }) \\ & \hline \end{aligned}$
Input Impedance	$\begin{aligned} & 125 \Omega \pm 0.1 \%, \\ & 1 / 8 \text { watt } \end{aligned}$
Absolute Max Ratings	-30 mA to +30 mA , current input
Converter Type	Successive approximation
Linearity Error (end to end)	± 2 counts
Input Stability	± 1 count*
Full-scale Calibration Error	$\begin{aligned} & \pm 10 \text { counts max. } \\ & @ 20 \mathrm{~mA}^{*} \end{aligned}$
Offset Calibration Error	$\begin{aligned} & \pm 5 \text { counts max. } \\ & @ 4 \mathrm{~mA}^{*} \end{aligned}$
Max Inaccuracy	$\begin{aligned} & \pm 0.4 \% \text { at } 25^{\circ} \mathrm{C} \\ & \left(770^{\circ} \mathrm{F}\right) \\ & \left(\begin{array}{l} 0.5 \% \text { at } 0 \text { oto } 60^{\circ} \mathrm{C} \\ \left(32 \text { to } 140^{\circ} \mathrm{F}\right) \end{array}\right. \end{aligned}$
Accuracy vs. Temperature	$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical
Recommended Fuse	$\begin{aligned} & \text { o.032A, series } 217 \\ & \text { fast-acting, } \\ & \text { current inputs } \end{aligned}$

* One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096)

